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A B S T R A C T   

Implicit functions are widely used in 3D human surface reconstruction due to their advantage to represent de-
tails. However, human reconstruction based on implicit functions struggles to maintain the integrity (unbroken 
body structure) and accuracy (no non-human parts) of human models. To address these issues, we propose a 
method, called TCR, for temporally consistent reconstruction of 3D clothed human surface with warp field. The 
fact that the general shape of a person does not change largely over time inspires us to exploit the temporally 
consistent shape information from previous frames to refine the human model of current frame. Therefore, we 
construct a canonical space and then store the shape information by updating the canonical model. To align the 
observed space with the canonical space, a warp field is firstly estimated for the forward and inverse warping of 
the human model. A probabilistic fusion strategy is then used to update the canonical model. In addition, the 
reconstructed result is further refined through the orthogonality constraints between the surface and its normal, 
which fully exploits the detailed information of estimated normal maps. Experiments on the Adobe and 
MonoPerfCap datasets show that TCR achieves the state-of-the-art performance. Furthermore, TCR is more 
robust and can maintain the integrity and accuracy of the reconstructed human body even with extreme poses 
and partial occlusions.   

1. Introduction 

Reconstructing 3D clothed human surface from still images or video 
is an important research topic in computer vision. It plays a significant 
role in many applications, such as holographic stereo communication, 
virtual reality technology and match broadcasting. Unlike human pose 
and shape estimation (HPS) [1], which reconstructs only naked body, 
the 3D clothed human reconstruction [2] requires fine-grained clothing 
details. 

Currently, several representations are widely used for human 
reconstruction, but they all suffer from their own problems. Parametric 
models, e.g. SMPL [5], can represent reasonable human shape and pose 
with prior knowledge. However, these models can only represent the 
naked body without clothing details. Although coupling the parametric 
models with vertex displacements [24,25] can reconstruct some small 
details, large deformations such as long skirts cannot be reconstructed 
due to the limited topology of parametric meshes. Neural implicit func-
tions[27,28] utilize neural networks such as multi-layer perceptrons 
(MLPs) to fit continuous occupancy functions or signed distance 

functions in 3D space. Owing to the continuity of the implicit function 
and the strong fitting ability of the neural network, neural implicit 
functions have theoretically infinite resolution and can represent arbi-
trary shapes. However, the lack of human body prior makes it difficult to 
maintain the integrity (unbroken body structure) and accuracy (no non- 
human parts) of human models. Combined representations adopt para-
metric models to provide the prior knowledge of human body in implicit 
functions. These methods [34] typically use a geometric encoder to 
integrate the 3D features of parametric models into the implicit neural 
network. Nevertheless, similar situations to neural implicit functions 
still occur in some difficult poses and partial occlusions when the 
parametric models are mis-estimated. 

In view of the above problems, we propose a method for Temporally 
Consistent Reconstruction (TCR) of 3D clothed human surface with 
warp field. As the general shape of a person does not change largely over 
time, the temporally consistent shape information from previous frames 
can facilitate subsequent reconstructions. Therefore, we use a canonical 
model (usually the reconstructed model of the first frame) to hold the 
shape information of each frame. The space where the canonical model 
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resides is called canonical space, where the pose of all models is identical 
to the canonical model. And the space where the reconstruction result 
resides is called observed space. To bridge the gap between the two 
spaces, a warp field, formed by a set of sparse transformation nodes, is 
estimated to warp the single-frame human models from the observed 
space to the canonical space. The temporally consistent shape infor-
mation is then preserved by fusing these warped models with the ca-
nonical model. As shown in Fig. 1, the integrity and accuracy of the 
canonical model is gradually improved through the fusion of temporally 
consistent shape information. 

The pipeline of TCR is shown in Fig. 2, where three stages are 
involved. 1) In the single frame prediction stage, the human model of each 
frame is predicted by an implicit reconstruction method [35] based on 
normal maps and parametric models. To enhance the details of the back 
normal map (invisible surface), the front normal map (visible surface) is 
fed into the back normal prediction network. Compared to the original 
image feature, the normal map feature is more direct for the prediction 
of the normal network. 2) In the temporally consistent reconstruction 
stage, the predicted human model of each frame is first transformed into 
the canonical space by a warp field, and then used to update the ca-
nonical model through a probabilistic fusion strategy. Finally, the 
updated canonical model is inversely warped into the observed space as 
a preliminary result. 3) In the normal map carving stage, the preliminary 
result is carved based on the orthogonality relations between the surface 
and its normal, which makes full use of the predicted normal maps and 
recovers the clothing details eroded by the previous stage. 

Experiments show that our method can not only maintain the 
integrity and accuracy of human models but also recover fine-grained 
details. We evaluate TCR on both indoor and outdoor videos. Mean-
while, we also show its robustness in challenging poses and partial oc-
clusions. Furthermore, compared to previous methods [27,28,34,35], 
our method achieves the state-of-the-art performance in the field of 
human reconstruction. In summary, this paper has three main 
contributions:  

• We present TCR to reconstruct an integral and accurate clothed 
human model by utilizing temporally consistent information even 
with challenging poses and partial occlusions.  

• We improve the normal prediction network for the invisible human 
surface by exploiting the normal map of the visible surface, which 
predicts more details of the back normal map.  

• We design a post-optimization algorithm that employs the predicted 
normal maps to refine the details of human models through 
orthogonality constraints. 

The rest of this paper is organized as follows. In Section 2, we sum-
marize the relevant work on 3D human reconstruction. Section 3 in-
troduces the pipeline and details of our method. Section 4 presents some 
experiments to validate the effectiveness of our method and show rele-
vant results. Finally, we conclude this paper and discuss future work in 
Section 5. 

2. Related work 

The field of 3D human reconstruction has been booming in recent 
years. Various representations for human models have been used by 
related methods, which can be divided into explicit representations 
(such as voxels [11] and triangle meshes [12]), and implicit represen-
tations (such as signed distance functions [38] and occupancy functions 
[27]). Currently, the explicit triangle meshes and implicit neural func-
tions are two of the most popular representations. 

2.1. Explicit mesh representation 

In recent years, statistical body models [3–8] have been proposed 
that use a set of pose and shape parameters to control model deforma-
tion. These models are learned from 3D body scans, with the prior of 
human shape and pose. SCAPE [3] is a notable early study on deform-
able human model. It decouples the representation of human body into 
pose-dependent and individual shape-dependent triangle deformations. 
SMPL [5] is a vertex-based linear model for human body, which is 
compatible with existing rendering engines. The above models simply 
ignore hand joints and facial expressions which have a significant 
impact on human communication. SMPL-X [8] is an extension of SMPL 
by combining the MANO [10] hand model and the FLAME [9] face 
model. SMPL(-X) is the most widely used model because of its parameter 
specification and compatibility with many industrial applications. 

Some parametric methods [12–15] learn parameters of statistical 
body models end-to-end and others [16–20] use intermediate features 
such as contour to enhance the supervision of learning. In addition, some 
methods [21–23] also consider temporal consistency and smoothness to 
boost the accuracy of parameter estimation. Although these methods 
can accurately estimate poses and naked human shapes, they are diffi-
cult to be applied to visual enhancement applications due to the lack of 
clothing details. To address this, some methods [24–26] add displace-
ments to the vertices of the parametric model to represent the details. 
Alldieck et al. [25] estimates details in the UV-space through normal and 
displacement maps which are applied to SMPL model for rendering. 
Octopus [26] predicts pose-invariant shape and adds an offset parameter 
to the template model in T-pose space to represent details. Nonetheless, 
some large deformations such as long skirt are still not well recon-
structed. Parametric methods can maintain the integrity of the recon-
structed human body in any difficult case owing to strong prior 
constraints. In this paper, to constrain the implicit human reconstruc-
tion, we also use a parametric model to provide prior knowledge of the 
human body. 

2.2. Implicit neural representation 

Unlike explicit meshes, which can only represent limited details, 
implicit neural representations can be adapted to arbitrary topological 
shape. A 3D human model is typically represented by an implicit iso- 
surface, whose the explicit surface is extracted by a preset level set. 
PIFu [27] applies pixel-aligned features and depth values as input to an 
implicit function represented by multi-layer perceptrons (MLPs). Saito 
et al. argue that pixel-aligned image features are more conducive to the 
function retaining local details than global features. PIFuHD [28] 

Fig. 1. Unlike existing single-frame methods such as parametric method [37], 
implicit method [28], and combined method [35], TCR gradually refines a 
canonical model by fusing the temporally consistent shape information of each 
frame (from left to right). 
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introduces a two-level network architecture releasing the limitations of 
image resolution. The coarse level is identical to PIFu and observes the 
lower resolution images. The fine level uses higher resolution images as 
input and focuses on detailed geometry. 

Thanks to the representation ability of implicit functions, above 
methods can represent clothing details of the human body. Nevertheless, 
these methods are prone to missing limbs and excess parts due to the 
absence of prior constraints. Since the pixel-aligned features cannot 
represent adequately spatial information in some views, human recon-
struction are easily subject to depth ambiguity. Hence, some methods 
[31–33] employ parametric model to extract spatial features. Zheng 
et al. [34] propose to employ a parametric model to regularize the im-
plicit function. They extract a voxel-aligned feature from the voxelized 
parametric model besides a pixel-aligned feature from the image. Xiu 
et al. [35] use SMPL body to guide detailed clothed-human surface 
normal prediction and visibility-aware implicit surface inference. 
Parametric models limit shape recovery away from the body, such as 
loose clothing. ECON [36] recovers 2.5D front and back detailed sur-
faces from normal maps using normal integration. The parametric model 
is used only as a guide to assist with front and back surface recovery and 
shape completion. These methods are highly dependent on the accuracy 
of the model parameter estimation. In the case of difficult poses or oc-
clusions, the inaccurate estimation of the parametric model will still 
result in broken model. 

To address this problem, we propose a method, called TCR, which 
uses temporally consistent shape information to ensure the integrity and 
accuracy of the reconstructed human model. Unlike the above methods, 
which only observe from a single frame, TCR combines the previous 
reconstruction in the same video to boost the quality of the current 
model. Following some previous work [38–40], we employs a canonical 
model in canonical space to hold the information of invariant human 
shape in each frame. As an ingenious method, ICON [35] takes full 
advantage of the representation ability of implicit functions and the 
human shape prior of parametric models. TCR enhances ICON’s normal 
prediction network by replacing the original image features with 

features from the front normal map to enhance the reconstruction of 
back details. In addition, we use the normal maps to optimize the details 
of the reconstruction results. 

3. Method 

The three main stages of TCR are shown in Fig. 2: a) single frame 
prediction, b) temporally consistent reconstruction, and c) mesh 
refinement. We first predict a coarse model for a single frame using the 
implicit network (Section 3.1). In the stage of temporally consistent 
reconstruction (Section 3.2), we transform the coarse model into the 
canonical space, and fuse the transformed model with the preset ca-
nonical model to obtain the updated one. A preliminary intact result can 
then be obtained by inverse warping. In the mesh refinement phase 
(Section 3.3), we utilize normal maps to refine the preliminary result 
and obtain a refined mesh. 

3.1. Single frame model 

The single-frame model framework in our approach is based on ICON 
[35], whose framework contains two stages: a) parametric model based 
normal prediction and b) implicit 3D reconstruction. In the stage of 
normal prediction, parametric models are first predicted using PyMAF 
[37] or other human pose and shape (HPS) regressors. Then the front/ 
back normal map Np = {Np

f ,N
p
b} of parametric model is obtained natu-

rally. Finally, the clothed-body normal maps Nc = {Nc
f ,N

c
b} are predicted 

by two normal networks ΓN = {ΓN
f ,ΓN

b } with SMPL-body normal maps 
Np and original image I as input: 

ΓN(Np, I)→Nc. (1)  

The quality of the clothed-body normal map estimation directly affects 
the details of reconstruction results. As can be seen from Fig. 5 the 
prediction of normal maps on the back tends to be smooth and lacks 
details. We argue that features extracted from normal maps are more 

Fig. 2. The pipeline of TCR includes three stages: 1) single frame prediction, 2) temporally consistent reconstruction, and 3) mesh refinement. Firstly, the human 
body of each frame is predicted by an ICON-based [35] neural implicit function, where the normal prediction network is re-designed. Secondly, the predicted human 
model is transformed into the canonical space by a warp field. And the warped model of the first frame is selected as a canonical model. The canonical model can be 
updated through probabilistic fusion. Then a preliminary intact result can be obtained by inverse warping. Finally, the predicted normal maps are utilized to refine 
the result. The refined model is the final output of TCR. 
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direct than those extracted from images. Therefore, we use front normal 
map instead of original image in the prediction of back normal map: 

ΓN
f (N

p
f , I)→Nc

f ,

ΓN
b (N

p
b,N

c
f )→Nc

b.
(2) 

In the stage of implicit 3D reconstruction, ICON employs a Multi- 
Layer Perceptron (MLP) as implicit neural network to estimate volu-
metric occupancy field. The local features Fx of the implicit function 
input are as follows: 

Fx = {Fd(x),Fp
n(x),F

c
n(x)} (3)  

where Fd is the distance from the query point x to the surface of the 
SMPL mesh. Fp

n and Fc
nis a normal vector extracted from Np and Nc 

respectively. Whether the normal map is Nf or Nb depends on the visi-
bility of the point P. We choose Nf if visible and Nb otherwise. 

Meanwhile, like ICON, a feedback loop is designed to alternately 
optimize the SMPL model and refine the normal map. The normal 
network can obtain human prior from SMPL model to help prediction of 
clothed-body normal maps. In turn, the SMPL model is optimized to 
achieve pixel-aligned fits by punishing the difference between the SMPL- 
body normal map Np and the clothed-body normal map Nc. 

3.2. Temporally consistent reconstruction 

The overall body shape of the same person in different frames does 
not change with posture. To preserve the information of human shape 
for subsequent model reconstruction, we build a canonical model in 
canonical space and fuse the reconstruction results of each frame into 
the canonical model. Usually we set the single-frame result of first frame 
as the original canonical model. The reconstruction result is obtained by 
warping the canonical model back into observed space. As shown in the 
Fig. 3, the process involves three steps: forward warping, temporal 
fusion and inverse warping. 

Forward and inverse warping. Since calculating the deformation of 
each voxel is very computative, we first construct a deformation node 
graph to drive the deformation of the entire model. The node of graph is 
attached to vertex of canonical model. We construct the node graph with 
sampling radius r and resample the node graph after each frame fusion. 
Refer to [38], the node graph at time t is defined as a set of n nodes: 

G t = {dnl, dnw, dnse3}t, (4)  

where dnl is the position of node in the canonical model, dnw determines 
the effect of this node on the surrounding vertices and dnse3 is the 
associated transformation. A warp field is constructed by smooth 

interpolation through a k-nearest node average in the canonical space. 
The warp field is used to transform the human model between the ca-
nonical space and the observed space. In the warp field, the warp 
function is defined for each vertex using dual-quaternion blending 
DQB(⋅): 

W (vi) = SE3(DQB(vi)), (5)  

where SE3(⋅) converts from quaternions back to an SE(3) transformation 
matrix and v is vertex of the canonical model. DQB(v) is the weighted 
average over dual quaternion transformations of the k-nearest nodes to 
the vertex v: 

DQB(vi) =

∑k

1
wk(vi)qki

‖
∑k

1
wk(vi)qki‖

, (6)  

where q ∈ R8 is unit dual quaternion. The influence of a node on a vertex 
rest with the position of node dnl and influencing factors dnw: 

wk(vi) = exp( − ‖dnk
l − vi‖

2
/
(2(dnk

w)
2
)). (7)  

We optimally solve for the parameters of warp function that transforms 
the canonical model Mc to the pose of single-frame model Mt at time t via 
following energy function: 

E(Mt,Mc, ξ) = Edata(Mt,Mc)+Ereg(Mc, ξ), (8)  

where ξ is the set of edges connecting nodes. The energy function con-
tains a data term Edata and a regularization term Ereg. We compute the 
ICP cost of two models in the data term to make the transformed model 
as consistent as possible with single-frame model. We compute under the 
Tukey loss function Ψdata: 

Edata(Mt,Mc) =
∑

v∈Mt

Ψdata(v̂ − vc), (9)  

where vc is the closest point to vertex v on the single-frame model. We 
employ warp function to transform vertex into observed space v̂ =

W (v). In order to maintain the topological shape and smoothness of the 
transformed model, we use a regularization term to punish the non- 
smooth transformation. The transformation of the edges connecting 
the nodes should be rigid, so the regularization term is as follows: 

Ereg(Mc, ξ) =
∑n

i=0

∑

j∈ξ(i)

Ψreg(q− 1
i dnj

l − q− 1
j dnj

l), (10) 

Fig. 3. Details of the temporally consistent reconstruction stage. Firstly, the single-frame model is transformed into the canonical space by a warp field. Then, the 
transformed model is fused with the canonical model at (t − 1). Finally, the updated canonical model at (t) is inversely warped into the observed space to obtain a 
preliminary result. 
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where ξ(i) are all the nodes connected to node i and Ψreg is Huber penalty 
function. After solving for the parameters, the point xc in canonical 
space can be transformed into observed space by warp function 
(xT

t ,1)
T
= W (xc)(xT

c , 1)
T. Naturally, the point xt in observed space can 

be converted into canonical space using the inverse of the warp function 
(xT

c ,1)
T
= W (x̂t )(xT

t , 1)
T. The x̂t is the closest point to xt on the trans-

formed canonical model. 
Temporal fusion. After transforming the model at time t into the pose 

of the canonical model through the warp field, we obtain the canonical 
model at time t by probability fusion between the transformed model 
and the canonical model at time t − 1. We use an array A = {Pn} to store 
the occupancy probability of truncated volume. The value of A is set as 
0 when corresponding voxel is non-occupied in canonical model. The 
transformed model is fused to canonical model by updating the occu-
pation probability. For the original occupied voxels (OV) and the non- 
occupied voxels (NOV), we adopt different fusion strategies to ensure 
that the correct shape information is integrated: 

Pn = F (Pn− 1, pn, λ, γ)

=

{
λPn− 1 + (1 − λ)pn OV

γpn NOV
,whenT > μ.

(11)  

The pn is occupancy probability from the implicit function of the current 
frame. The parameter λ, γ controls the influence of the new occupancy 
probability on the original. The value of them determines whether the 
non-human voxel is excluded and whether the new occupied voxel is 
added or not. However, direct fusion will result in poor model detail due 
to alignment errors, especially in the original visible region. We argue 
that the prediction of the occupancy probability of visible voxels is more 
accurate than the invisible ones. Therefore, we set a confidence 
parameter μ to control the change of voxel occupancy state: 

μ = 1 − |tanh(θ⋅VSDF(x))|, (12)  

where VSDF(x) is the value of signed distance function from the visible 
surface generated by SMPL model and θ is a hyper-parameter. When μ is 
less than the set threshold T, the occupancy probability of voxel x is not 
updated. This fusion strategy allows us to integrate the shape informa-
tion of the model from each frame into the canonical model. 

3.3. Mesh refinement 

In the stage of temporally consistent reconstruction, we reconstruct a 
preliminary model with intact body structure. The model cannot 
adequately show the details of the normal maps. Therefore, we added a 
post-optimization step to improve the details of the reconstruction 
model using the clothed-body normal maps. By the orthogonality rela-
tionship between tangent vectors and normal vectors of the recon-
struction model surface, the depth of the surface vertex in the front view 
is updated in a traversal way. The normal vector to pixel i in the clothed- 
body normal map is N = (N ix,N iy,N iz) and the position of the corre-
sponding vertex on the model surface is (Xi,Yi, Zi). The model surface 
vertex corresponding to the adjacent pixel point j is (Xj,Yj,Zj). From the 
orthogonality relation we can obtain the following equality: 

((Xi,Yi, Zi) − (Xj, Yj,Zj))⋅N = 0. (13)  

Then the updated depth value can be obtained: 

Zi = (N ix(Xj − Xi)+N iy(Yj − Yi)+N izZj)
/

N iz. (14)  

With this equation, the preliminary model is refined pixel by pixel from 
top to bottom and left to right. However, there are wrong adjustment 
when the adjacent pixels do not correspond to the same body part. 
Therefore, we set a threshold μ to filter out these pixels. We ignore these 
pixels during the mesh refinement phase when the following two situ-

ations occur: 1) The difference between the depth values of vertex cor-
responding to adjacent pixels is greater than the threshold value μ. 2) 
The pixel of normal maps cannot be projected onto the surface of the 
model. 

4. Experiments 

In this section, we present a quantitative and qualitative evaluation 
of our method and compare TCR with state-of-the-art human recon-
struction methods on two public benchmark datasets. All experiments 
are performed on an Intel Xeon Gold 6226R 2.9 GHz CPU and an NVIDIA 
GeForce RTX 3090 GPU. 

4.1. Datasets 

Training data. As training data we use THuman2.0 [41], which con-
tains 500 realistic human models captured by a dense DSLR rig and 
provides corresponding parameters for SMPL(-X) [5,8]. All 3D models 
have corresponding texture maps, so the image can be generated from 
36 different perspectives by model rendering. Meanwhile, all the 
methods [27,28,34,35] are retrained on this dataset for a fair 
comparison. 

Testing data. To demonstrate the effectiveness of the proposed 
method, we conduct some experiments on Adobe [43] and MonoPerfCap 
[42]. The Adobe dataset is an indoor dataset with eight views, con-
taining three subjects and ten action sequences. The videos were 
recorded in rooms covered with green cloth. To complement this, we use 
two sequences with accurate surface reconstruction from the Monop-
ercap dataset as an evaluation on outdoor videos. The ground truth 
surfaces of these two sequences are derived from the work of [44,45]. 
They are reconstructed from multi-view images. 

4.2. Evaluation 

Metrics. We use three common metrics to evaluate the proposed 
method. Chamfer distance (Chamfer) measures the similarity between 
the sampled point clouds of the reconstruction meshes and the ground 
truth. For each point in the point cloud, this metric finds the nearest 
point in another point cloud, and sums the square of the distance. Point- 
to-surface Euclidean distance (P2S) is the average Euclidean distance 
from the vertices on the reconstruction mesh to the ground-truth sur-
face. The previous two metrics can only reflect the quality of the general 
shape, not the quality of local details. Normal reprojection error (L2- 
norm) indicates the fineness of local details by calculating the L2 error 
between the normal map of the reconstruction meshes and the ground 
truth. 

TCR vs. SOTA. TCR makes full use of temporal information and 
normal maps to boost the quality of the clothed human reconstruction. 
Table 1 shows the performance of our method on Adobe and MonoP-
erfcap datasets. It is also compared with several well-known single- 
frame methods, such as PIFu [27] and ECON [36]. We notice that TCR 
outperforms the state-of-the-art methods on all three metrics. Further-
more, we evaluate the performance of our method qualitatively and 
compare it with these methods in Fig. 4. We can see that compared to 
ICON and TCR, the reconstruction results of PIFuHD [28] are often 
broken and often contain non-human parts, due to the lack of prior 
constraints. Meanwhile, thanks to the temporal information and the 
detailed information from normal maps, TCR is superior to the other two 
methods in terms of details and completeness. 

Ablation experiments. Meanwhile, to explore the effect of Step II 
(Section 3.2) and Step III (Section 3.3) on the overall performance, two 
sets of ablation experiments are performed. In the first experiment, we 
only refine the single-frame result with normal maps (w/o II). In the 
second experiment, we use only the temporally consistent information 
to obtain the intact human model (w/o III). It can be seen from the 
experimental results in Table 1 that all of them have a significant effect 
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on the performance improvement of the whole method. The Step II 
ensures the integrity of the reconstruction mannequin and the Step III 
refines the details of the model. 

Normal prediction. In Section 3.1, in order to enhance the back detail 
prediction of normal network, we replace the original features I with 
front normal map features Nc

f . In Table 2 and Fig. 5, we compare the 
performance of the normal networks before and after replacing image 
features with front normal map features. In Table 2, the metric is the L2 
error between the clothed-body normal map and the ground truth 
generated by model rendering. From Table 2 we can see that the error is 
reduced by using the front normal map. As shown in Fig. 5, the network 
can learn more details of the back more directly from the front normal 

maps. 
Temporal Fusion. As discussed in Section 3.2, the parameter λ, γ 

controls the influence of the new occupancy probability on the original 
and directly determines the quality of the canonical model after fusion. 
In Table 3, we show the influence of different values of the fusion pa-
rameters on the overall performance of our method. We preset several 
sets of parameter values for λ, γ and fix one parameter when another 
changes. As shown in Fig. 7, the tendency of performance to change with 
parameter values is approximated by a parabola with an upward 
opening and the parameters λ = 0.70, γ = 0.80 are optimal. When λ is 
too large, the dynamic shape of the current frame cannot be fused into 
the model. While λ is too small, useful shape information cannot be 
completely retained. Similarly, if γ is too large, some non-human parts 
will be included in the canonical model. In Fig. 8, the reconstruction 
results on in-the-wild videos from the MonoPerfCap dataset [42] are 
shown in canonical space. With the fusion of the shape information from 
the video frame, the integrity and accuracy of the mannequin is pro-
gressively improved. The improvement in the quality of our recon-
struction results depends on the new shape information constantly 
provided in the video frame. 

Robustness to hard cases. With the help of parametric models, while 
some implicit methods such as ICON [35] are able to keep the manne-
quin intact in most cases, the model is still prone to the loss of limbs 
when the parameters of parametric models is misestimated. Fig. 6 shows 
the performance of our method and ICON on some examples of difficult 

Table 1 
Quantitative evaluation (cm) of our method and previous work using three 
metrics: point-to-surface Euclidean distance, chamfer distance and normal re- 
projection error. Besides, the performance without Step II or Step III is also 
shown below.   

Adobe MonoPerfCap  

P2S ↓ Chamfer 
↓ 

L2-norm 
↓ 

P2S ↓ Chamfer 
↓ 

L2-norm 
↓ 

PIFu [27] 3.856 3.256 0.199 3.596 2.956 0.177 
PIFuHD  

[28] 
3.689 3.102 0.196 3.355 2.785 0.175 

PaMIR  
[34] 

3.125 2.896 0.181 2.865 2.262 0.139 

ICON [35] 2.572 2.389 0.178 1.977 1.747 0.132 
ECON [36] 2.316 2.351 0.152 1.842 1.627 0.123        

TCR(w/o 
II) 

2.549 2.377 0.162 1.935 1.706 0.125 

TCR(w/o 
III) 

2.359 2.268 0.155 1.756 1.638 0.121        

TCR 2.261 2.178 0.127 1.717 1.598 0.108  

Fig. 4. Qualitative comparison of our method with the previous methods, PIFuHD [28] and ICON [35]. The images are selected from the Adobe dataset [43]. PIFuHD 
tends to produce broken structures due to the lack of a prior knowledge for human body. Meanwhile, TCR is superior to the other two methods in terms of the 
integrity and accuracy of the reconstruction results. 

Table 2 
Comparison of normal map estimation results between image features (I) and 
front normal map features (NF). The metric is the L2 error of the clothed-body 
normal map.   

L-NF ↓ L-NB ↓ 

I + SMPL 0.155 0.213 
NF + SMPL 0.151 0.192  
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poses and partial occlusions. These difficult examples are taken from the 
Adobe dataset. As can be seen from the circled part of the reconstruction 
model, compared to ICON, TCR can preserve the integrity of human 
body by using temporally consistent information in these hard cases. 

Limitations. TCR has two main limitations: (1) As shown in Table 4, 
the proposed method has a longer run time compared to other methods, 
such as the latest ECON [36], due to the optimization process of solving 
the warp field. The time is the average run time of each method on the 
Adobe dataset [43], excluding rendering. (2) The accuracy of our 
method requires video input, and the Step II of TCR cannot play a role 
for a single frame image. TCR relies on the information provided by 
human motion in the video, and reconstruction accuracy is limited when 
the person in the video is stationary or has little movement. 

5. Conclusions and discussion 

In this paper we present a method, called TCR, for maintaining the 
integrity and accuracy of human models by fusing the temporally 
consistent information. TCR includes three main stages: single frame 
prediction, temporally consistent reconstruction and mesh refinement. 
Considering that the general shape of a person is changeless over time, 
we utilize the shape information from previous frames to reconstruct the 
current human model. Unlike previous single-frame based methods, we 

fuse the shape information of the previous reconstruction results into a 
canonical model. In addition, we employ the normal maps to refine the 
details of human models. 

We evaluate the performance of TCR qualitatively and quantitatively 
on the Adobe and MonoPerfCap datasets. The results show that our 
method outperforms the state of the art. Experiments on difficult cases 
such as extreme poses and partial occlusions show that TCR can main-
tain the integrity and accuracy of human models even when the pose 
estimation is inaccurate. For practical applications, TCR is very time- 
consuming due to the optimization process. The issue of the recon-
struction speed needs to be further studied in the future. Meanwhile, a 
large-scale dataset with high quality videos and ground-truth human 
body meshes is desired to promote the development of the field in 
temporal human surface reconstruction. 

Fig. 5. Comparison on the predicted normal maps with different features, i.e. 
the input image (I) or the front normal map (NF), fed into the back normal map 
prediction network. 

Fig. 6. Qualitative comparison on examples with difficult poses and partial occlusions. Compared to ICON [35], which tends to lose limbs due to the mis-estimation 
of SMPL [5] model, TCR maintains the integrity and accuracy of the reconstruction. 

Table 3 
Performance comparison of the fusion strategies with different parameters λ, γ. 
The best set of parameters are highlighted.   

P2S ↓ Chamfer ↓ L2-norm ↓ 

λ = 0.70, γ = 0.70 2.566 2.346 0.151 
λ = 0.70, γ = 0.75 2.410 2.221 0.140 
λ = 0.70, γ = 0.90 2.398 2.215 0.135 
λ = 0.70, γ = 0.85 2.366 2.188 0.134 
λ = 0.70, γ = 0.80 2.261 2.178 0.127 
λ = 0.65, γ = 0.80 2.411 2.228 0.136 
λ = 0.60, γ = 0.80 2.585 2.366 0.155 
λ = 0.75, γ = 0.80 2.365 2.196 0.132 
λ = 0.80, γ = 0.80 2.465 2.257 0.146  
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The average run time of the proposed method and the early method for mesh 
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PIFuHD  
[28] 

PaMIR  
[34] 

ICON  
[35] 

ECON  
[36] 
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